Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cell Mol Immunol ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565887

ABSTRACT

T cells are an important component of adaptive immunity and protect the host from infectious diseases and cancers. However, uncontrolled T cell immunity may cause autoimmune disorders. In both situations, antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens. Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion. Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets. The realm of immunometabolism research is undergoing swift advancements. Encapsulating all the recent progress within this concise review in not possible. Instead, our objective is to provide a succinct introduction to this swiftly progressing research, concentrating on the metabolic intricacies of three pivotal nutrient classes-lipids, glucose, and amino acids-in T cells. We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells. Moreover, we delve into the prospect of "editing" metabolic pathways within T cells using pharmacological or genetic approaches, with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.

2.
Eur J Immunol ; : e2350825, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650034

ABSTRACT

Cyclosporin A is a well-established immunosuppressive drug used to treat or prevent graft-versus-host disease, the rejection of organ transplants, autoimmune disorders, and leukemia. It exerts its immunosuppressive effects by inhibiting calcineurin-mediated dephosphorylation of the nuclear factor of activated T cells (NFAT), thus preventing its nuclear entry and suppressing T cell activation. Here we report an unexpected immunostimulatory effect of cyclosporin A in activating the mammalian target of rapamycin complex 1 (mTORC1), a crucial metabolic hub required for T cell activation. Through screening a panel of tool compounds known to regulate mTORC1 activation, we found that cyclosporin A activated mTORC1 in CD8+ T cells in a 3-phosphoinositide-dependent protein kinase 1 (PDK1) and protein kinase B (PKB/AKT)-dependent manner. Mechanistically, cyclosporin A inhibited the calcineurin-mediated AKT dephosphorylation, thereby stabilizing mTORC1 signaling. Cyclosporin A synergized with mTORC1 pathway inhibitors, leading to potent suppression of proliferation and cytokine production in CD8+ T cells and an increase in the killing of acute T cell leukemia cells. Consequently, relying solely on CsA is insufficient to achieve optimal therapeutic outcomes. It is necessary to simultaneously target both the calcineurin-NFAT pathway and the mTORC1 pathway to maximize therapeutic efficacy.

3.
Sci Immunol ; 9(94): eadg8817, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640251

ABSTRACT

CD4+ regulatory T (Treg) cells accumulate in the tumor microenvironment (TME) and suppress the immune system. Whether and how metabolite availability in the TME influences Treg cell differentiation is not understood. Here, we measured 630 metabolites in the TME and found that serine and palmitic acid, substrates required for the synthesis of sphingolipids, were enriched. A serine-free diet or a deficiency in Sptlc2, the rate-limiting enzyme catalyzing sphingolipid synthesis, suppressed Treg cell accumulation and inhibited tumor growth. Sphinganine, an intermediate metabolite in sphingolipid synthesis, physically interacted with the transcription factor c-Fos. Sphinganine c-Fos interactions enhanced the genome-wide recruitment of c-Fos to regions near the transcription start sites of target genes including Pdcd1 (encoding PD-1), which promoted Pdcd1 transcription and increased inducible Treg cell differentiation in vitro in a PD-1-dependent manner. Thus, Sptlc2-mediated sphingolipid synthesis translates the extracellular information of metabolite availability into nuclear signals for Treg cell differentiation and limits antitumor immunity.


Subject(s)
Neoplasms , Sphingosine/analogs & derivatives , T-Lymphocytes, Regulatory , Humans , Programmed Cell Death 1 Receptor/metabolism , Serine/metabolism , Sphingolipids/metabolism , Tumor Microenvironment
4.
Nat Commun ; 14(1): 6421, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828069

ABSTRACT

Controllable growth of two-dimensional (2D) single crystals on insulating substrates is the ultimate pursuit for realizing high-end applications in electronics and optoelectronics. However, for the most typical 2D insulator, hexagonal boron nitride (hBN), the production of a single-crystal monolayer on insulating substrates remains challenging. Here, we propose a methodology to realize the facile production of inch-sized single-crystal hBN monolayers on various insulating substrates by an atomic-scale stamp-like technique. The single-crystal Cu foils grown with hBN films can stick tightly (within 0.35 nm) to the insulating substrate at sub-melting temperature of Cu and extrude the hBN grown on the metallic surface onto the insulating substrate. Single-crystal hBN films can then be obtained by removing the Cu foil similar to the stamp process, regardless of the type or crystallinity of the insulating substrates. Our work will likely promote the manufacturing process of fully single-crystal 2D material-based devices and their applications.

5.
Nat Immunol ; 24(11): 1921-1932, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813964

ABSTRACT

The malate shuttle is traditionally understood to maintain NAD+/NADH balance between the cytosol and mitochondria. Whether the malate shuttle has additional functions is unclear. Here we show that chronic viral infections induce CD8+ T cell expression of GOT1, a central enzyme in the malate shuttle. Got1 deficiency decreased the NAD+/NADH ratio and limited antiviral CD8+ T cell responses to chronic infection; however, increasing the NAD+/NADH ratio did not restore T cell responses. Got1 deficiency reduced the production of the ammonia scavenger 2-ketoglutarate (2-KG) from glutaminolysis and led to a toxic accumulation of ammonia in CD8+ T cells. Supplementation with 2-KG assimilated and detoxified ammonia in Got1-deficient T cells and restored antiviral responses. These data indicate that the major function of the malate shuttle in CD8+ T cells is not to maintain the NAD+/NADH balance but rather to detoxify ammonia and enable sustainable ammonia-neutral glutamine catabolism in CD8+ T cells during chronic infection.


Subject(s)
Ketoglutaric Acids , NAD , Humans , Oxidation-Reduction , NAD/metabolism , Ketoglutaric Acids/metabolism , Ammonia , Malates/metabolism , CD8-Positive T-Lymphocytes/metabolism , Persistent Infection , Antiviral Agents
6.
Cancer Cell ; 41(10): 1817-1828.e9, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37683639

ABSTRACT

The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses.

7.
Medicina (Kaunas) ; 59(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37109742

ABSTRACT

Background and Objectives: As is well understood, peroxisome proliferator-activated receptor gamma cofactor-related 1 (PPRC1) plays a central role in the transcriptional control of the mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) process, yet its critical role in pan-cancer remains unclear. Materials and Methods: In this paper, the expression levels of PPRC1 in different tumor tissues and corresponding adjacent normal tissues were analyzed based on four databases: The Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), and Tumor Immune Estimation Resource (TIMER). Meanwhile, the prognostic value of PPRC1 was inferred using Kaplan-Meier plotter and forest-plot studies. In addition, the correlation between PPRC1 expression and tumor immune cell infiltration, immune checkpoints, and the tumor-stemness index was analyzed using TCGA and TIMER databases. Results: According to our findings, the expression level of PPRC1 was found to be different in different cancer types and there was a positive correlation between PPRC1 expression and prognosis in several tumor types. In addition, PPRC1 expression was found to be significantly correlated with immune cell infiltration, immune checkpoints, and the tumor-stemness index in both ovarian and hepatocellular carcinoma. Conclusions: PPRC1 demonstrated promising potential as a novel biomarker in pan-cancer due to its potential association with immune cell infiltration, expression of immune checkpoints, and the tumor-stemness index.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Ovarian Neoplasms , Female , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Ovarian Neoplasms/genetics , Prognosis
8.
Int J Infect Dis ; 130: 20-27, 2023 May.
Article in English | MEDLINE | ID: mdl-36682682

ABSTRACT

OBJECTIVES: To evaluate the safety, immunogenicity, and lot-to-lot consistency of Sabin strain-based inactivated polio vaccine (sIPV) in a five-dose vial presentation. METHODS: Stage I was an open-label safety observation, in which 72 healthy subjects (including 24 adults, children, and infants each) were given one or three doses of the five-dose vial sIPV; stage II was a randomized, blinded, and positive-control study, in which 1500 infants were randomized at the ratio of 1: 1: 1: 1: 1 into five groups to receive either three doses of the five-dose sIPV three lots, a conventional inactivated poliovirus vaccine, or a single-dose sIPV as controls, for primary immunization. Safety, immunogenicity, and lot-to-lot consistency were assessed. RESULTS: Among 1456 subjects who completed the primary immunization, the geometric mean titer ratios of types 1, 2, and 3 of each pair of lots were all within the equivalence criteria margin (0.67-1.50). The seroconversion rates of types 1, 2, and 3 in the combined test group were 98.02%, 94.07%, and 98.77%, respectively, which were noninferior to both control groups. The overall incidence of adverse reactions was 29.68% and erythema was the most common adverse reaction with incidences of 10.47%,9.33%, and 9.73% in the combined test group and control groups (P >0.05). CONCLUSION: The five-dose sIPV demonstrated good safety, immunogenicity, and lot-to-lot consistency.


Subject(s)
Poliomyelitis , Poliovirus Vaccine, Inactivated , Poliovirus Vaccine, Oral , Child , Humans , Infant , Antibodies, Viral , Poliomyelitis/prevention & control , Poliovirus , Poliovirus Vaccine, Inactivated/adverse effects , Poliovirus Vaccine, Oral/adverse effects
9.
Eur J Immunol ; 53(1): e2149400, 2023 01.
Article in English | MEDLINE | ID: mdl-36263815

ABSTRACT

While the immunosuppressive function of regulatory T (Treg) cells has been extensively studied, their immune-supportive roles have been less well investigated. Using a lymphocytic choriomeningitis virus (LCMV) Armstrong infection mouse model, we found that Treg cell-derived interleukin (IL)-15 is required for long-term maintenance of the KLRG1+ IL-7Rα- CD62L- terminal effector memory CD8+ T (tTEM) cell subset, but dispensable for the suppressive function of Treg cells themselves. In contrast, deletion of Il15 from other sources, including myeloid cells and muscles, did not affect the composition of the memory CD8+ T cell pool. Our findings identify Treg cells as an essential IL-15 source maintaining tTEM cells and suggest that Treg cells promote the diversity of immunological memory.


Subject(s)
Lymphocytic Choriomeningitis , T-Lymphocytes, Regulatory , Mice , Animals , Lymphocytic choriomeningitis virus , Immunologic Memory , Interleukin-15 , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , Interleukin-2
10.
Front Immunol ; 14: 1320352, 2023.
Article in English | MEDLINE | ID: mdl-38250072

ABSTRACT

Background: CoronaVac has been authorized worldwide for preventing coronavirus disease 2019. Information on the safety, immunogenicity and consistency of different lots and workshops of CoronaVac is presented here. Methods: In this randomized, double-blind, phase IV clinical trial in healthy children and adolescents aged 3-17 years, we aimed to assess the lot-to-lot and workshop-to-workshop consistency, as well as immunogenicity and safety of seven lots of commercial-scale CoronaVac from three workshops. Eligible participants were enrolled into three age cohorts (3-5, 6-11 and 12-17 years). Within each cohort, participants were randomly assigned to seven groups to receive two doses of CoronaVac, with four weeks apart. Serum samples were collected before the first dose and 28 days after the second dose for neutralizing antibody testing. The primary objective was to evaluate the consistency of immune response among different lots within workshop 2 or 3, as well as among different workshops. The primary endpoint was geometric mean titer (GMT) of neutralizing antibody at 28 days after full-course vaccination. Results: Between July 27th and November 19th, 2021, a total of 2,520 eligible participants were enrolled. Results showed that 95% confidence intervals (CIs) of GMT ratios for all comparative groups among different lots or workshops were within the equivalence criteria of [0.67, 1.5]. The GMT and seroconversion rate for all participants were 126.42 (95%CI: 121.82, 131.19) and 99.86% (95%CI: 99.59%, 99.97%) at 28 days after two-dose vaccination. The incidences of adverse reactions were similar among seven lots, and most adverse reactions were mild in Grade 1, with no serious adverse event. Conclusion: CoronaVac is well-tolerated and can elicit a good immune response among children and adolescents. Lot-to-lot consistency results indicate stable manufacturing of commercial-scale CoronaVac.


Subject(s)
COVID-19 Vaccines , COVID-19 , Child , Humans , Adolescent , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Antibodies, Neutralizing , Double-Blind Method , Seroconversion
11.
Front Immunol ; 13: 1049485, 2022.
Article in English | MEDLINE | ID: mdl-36505481

ABSTRACT

Background: Colorectal adenocarcinoma (COAD) is one of the most common malignancies and angiogenesis is vital to the development of cancer. Here, we explored the roles of angiogenesis-related genes (ARGs) that affect the prognosis of COAD and constructed risk models to assess patient prognosis, immune characteristics, and treatment outcomes. Methods: We comprehensively characterized the transcriptional and genetic modifications of 48 ARGs in COAD and evaluated the expression patterns. We identified two ARG subgroups using the consensus clustering algorithm. Based on the differentially expressed genes (DEGs) of two ARG subtypes, we calculated risk score, namely ARG_scores, and calssified COAD patients into different risk groups. To investigate the expression of ARG_score-related genes, qRT-PCR was performed. Subsequently, we mapped the nomogram to visually and accurately describe the value of the application of ARG_score. Finally, the correlation between ARG_score and clinical features, immune infiltration along with drug sensitivity were explored. Results: We identified two ARG related subgroups and there were great differences in overall survival (OS) and tumor microenvironment. Then, we created an ARG_score for predicting overall survival based on eight DEGs and confirmed its reliable predictive power in COAD patients, with higher ARG_score associated with worse prognosis. Furthermore, eight ARG_score-related genes expression was investigated by qRT-PCR. To make the ARG_score clinically feasible, we created a highly reliable nomogram. We also found a higher proportion of microsatellite instability-high (MSI-H) and higher tumor mutational burden (TMB) in the high-risk group. In addition, ARG_score was notably correlated with cancer stem cell indices and drug sensitivity. Conclusion: This scoring model has potential clinical application value in the prognosis, immune microenvironment and therapeutic drug sensitivity of COAD, which provides new insights for personalized treatment.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Humans , Prognosis , Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Microsatellite Instability , Cardiovascular Physiological Phenomena , Tumor Microenvironment/genetics
12.
Cancer Biol Med ; 19(11)2022 10 24.
Article in English | MEDLINE | ID: mdl-36269001

ABSTRACT

The tumor microenvironment is an ecosystem composed of multiple types of cells, such as tumor cells, immune cells, and cancer-associated fibroblasts. Cancer cells grow faster than non-cancerous cells and consume larger amounts of nutrients. The rapid growth characteristic of cancer cells fundamentally alters nutrient availability in the tumor microenvironment and results in reprogramming of immune cell metabolic pathways. Accumulating evidence suggests that cellular metabolism of nutrients, such as lipids and amino acids, beyond being essential to meet the bioenergetic and biosynthetic demands of immune cells, also regulates a broad spectrum of cellular signal transduction, and influences immune cell survival, differentiation, and anti-tumor effector function. The cancer immunometabolism research field is rapidly evolving, and exciting new discoveries are reported in high-profile journals nearly weekly. Therefore, all new findings in this field cannot be summarized within this short review. Instead, this review is intended to provide a brief introduction to this rapidly developing research field, with a focus on the metabolism of two classes of important nutrients-lipids and amino acids-in immune cells. We highlight recent research on the roles of lipids and amino acids in regulating the metabolic fitness and immunological functions of T cells, macrophages, and natural killer cells in the tumor microenvironment. Furthermore, we discuss the possibility of "editing" metabolic pathways in immune cells to act synergistically with currently available immunotherapies in enhancing anti-tumor immune responses.


Subject(s)
Ecosystem , Neoplasms , Immunity , Amino Acids
13.
Front Oncol ; 12: 1007918, 2022.
Article in English | MEDLINE | ID: mdl-36212459

ABSTRACT

Background: Cuproptosis, a newly described method of regulatory cell death (RCD), may be a viable new therapy option for cancers. Long noncoding RNAs (lncRNAs) have been confirmed to be correlated with epigenetic controllers and regulate histone protein modification or DNA methylation during gene transcription. The roles of cuproptosis-related lncRNAs (CRLs) in Colon adenocarcinoma (COAD), however, remain unknown. Methods: COAD transcriptome data was obtained from the TCGA database. Thirteen genes associated to cuproptosis were identified in published papers. Following that, correlation analysis was used to identify CRLs. The cuproptosis associated prognostic signature was built and evaluated using Lasso regression and COX regression analysis. A prognostic signature comprising six CRLs was established and the expression patterns of these CRLs were analyzed by qRT-PCR. To assess the clinical utility of prognostic signature, we performed tumor microenvironment (TME) analysis, mutation analysis, nomogram generation, and medication sensitivity analysis. Results: We identified 49 prognosis-related CRLs in COAD and constructed a prognostic signature consisting of six CRLs. Each patient can be calculated for a risk score and the calculation formula is: Risk score =TNFRSF10A-AS1 * (-0.2449) + AC006449.3 * 1.407 + AC093382.1 *1.812 + AC099850.3 * (-0.0899) + ZEB1-AS1 * 0.4332 + NIFK-AS1 * 0.3956. Six CRLs expressions were investigated by qRT-PCR in three colorectal cancer cell lines. In three cohorts, COAD patients were identified with different risk groups, with the high-risk group having a worse prognosis than the low-risk group. Furthermore, there were differences in immune cell infiltration and tumor mutation burden (TMB) between the two risk groups. We also identified certain drugs that were more sensitive to the high-risk group: Paclitaxel, Vinblastine, Sunitinib and Elescloml. Conclusions: Our findings may be used to further investigate RCD, comprehension of the prognosis and tumor microenvironment infiltration characteristics in COAD.

14.
Cancers (Basel) ; 14(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36139663

ABSTRACT

Oxidative phosphorylation (OXPHOS) is an emerging target in cancer therapy. However, the prognostic signature of OXPHOS in colorectal adenocarcinoma (COAD) remains non-existent. We comprehensively investigated the expression pattern of OXPHOS-related genes (ORGs) in COAD from public databases. Based on four ORGs, an OXPHOS-related prognostic signature was established in which COAD patients were assigned different risk scores and classified into two different risk groups. It was observed that the low-risk group had a better prognosis but lower immune activities including immune cells and immune-related function in the tumor microenvironment. Combining with relevant clinical features, a nomogram for clinical application was also established. Receiver operating characteristic (ROC) and calibration curves were constructed to demonstrate the predictive ability of this risk signature. Moreover, a higher risk score was significantly positively correlated with higher tumor mutation burden (TMB) and generally higher gene expression of immune checkpoint, N6-methyladenosine (m6A) RNA methylation regulators and mismatch repair (MMR) related proteins. The results also indicated that the high-risk group was more sensitive to immunotherapy and certain chemotherapy drugs. In conclusion, OXPHOS-related prognostic signature can be utilized to better understand the roles of ORGs and offer new perspectives for clinical prognosis and personalized treatment.

15.
Front Genet ; 13: 995644, 2022.
Article in English | MEDLINE | ID: mdl-36176299

ABSTRACT

Background: The correlation between exosomes and the tumor immune microenvironment has been proved to affect tumorigenesis and progression of colon adenocarcinoma (COAD). However, it remained unclear whether exosomes had an impact on the prognostic indications of COAD patients. Methods: Expression of exosome-related genes (ERGs) and clinical data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The ERGs associated with prognosis were identified and exosome-related prognostic signature was constructed. Patients in two risk groups were classified according to the risk score calculation formula: Risk score = 1.0132 * CCKBR + 0.2416 * HOXC6 + 0.7618 * POU4F1. The expression of three ERGs was investigated by qRT-PCR. After that, we developed a nomogram predicting the likelihood of survival and verified its predictive efficiency. The differences of tumor immune microenvironment, immune cell infiltration, immune checkpoint and sensitivity to drugs in two risk groups were analyzed. Results: A prognostic signature was established based on the three ERGs (CCKBR, HOXC6, and POU4F1) and patients with different risk group were distinguished. Survival analysis revealed the negative associated of risk score and prognosis, ROC curve analyses showed the accuracy of this signature. Three ERGs expression was investigated by qRT-PCR in three colorectal cancer cell lines. Moreover, risk score was positively correlated with tumor mutational burden (TMB), immune activities, microsatellite instability level, the expression of immune checkpoint genes. Meanwhile, the expression level of three ERGs and the risk score were markedly related with the sensitive response to chemotherapy. Conclusion: The novel signature composed of three ERGs with precise predictive capabilities can be used to predict prognosis and provide a promising therapeutic target for improving the efficacy of immunotherapy.

16.
Front Immunol ; 13: 932876, 2022.
Article in English | MEDLINE | ID: mdl-35837397

ABSTRACT

Background: Four RNA adenosine modifications, including m6A, m1A, alternative polyadenylation, and adenosine-to-inosine RNA editing, have been identified as potentially valuable in influencing colorectal carcinogenesis, immune infiltration, and response to drug therapy. However, the regulatory mechanisms and clinical significance of these four RNA modifications in ovarian cancer (OC) remain unknown. Methods: We comprehensively described the transcriptional and genetic modifications of 26 RNA modification "writers" in OC and assessed the expression patterns. We identified two RNA modification subtypes using an unsupervised clustering approach. Subsequently, using differentially expressed genes (DEGs) in both subtypes, we calculated RNA modification "writer" scores (RMW scores) to characterize the RNA modifications of single OC patients. RMW score-related gene expression was investigated by qRT-PCR. We explored the correlation between RMW score and clinical features, immune infiltration, and drug sensitivity. We drew a nomogram to more intuitively and accurately describe the application value of the RMW score. Results: We found that molecular alterations in "writers" are strongly related to prognostic and immune-infiltrating features in OC patients. We identified two different clusters of RNA modifications. According to the immune infiltration characteristics in the two RNA modification isoforms, cluster A and cluster B can correspond to "hot" and "cold" tumors, respectively. With the median RMW score, we classified the patients into high- and low-score subgroups. A low RMW score was associated with good patient prognosis and lower immune infiltration. In addition, a low RMW score equated with a higher cancer stem cell index and a lower tumor mutation burden, which to some extent affected the sensitivity of patients to therapeutic drugs. Seven RMW score-related gene expressions were investigated by qRT-PCR in three OC cell lines. Compared to previously known models, our established RMW score has higher accuracy in predicting patient survival. Conclusion: A comprehensive analysis of four RNA modification patterns in OC reveals their potential value in OC prognosis, immune microenvironment, and drug sensitivity. These results could deepen our knowledge of RNA modification and yield fresh insights for new personalized therapeutic strategies.


Subject(s)
Adenosine , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Female , Humans , Ovarian Neoplasms/genetics , Prognosis , RNA/genetics , Tumor Microenvironment/genetics
17.
Int J Cancer ; 151(5): 797-808, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35499751

ABSTRACT

Memory CD8+ T cells mature after antigen clearance and ultimately express CD8 protein at levels higher than those detected in effector CD8+ T cells. However, it is not clear whether engagement of CD8 in the absence of antigenic stimulation will result in the functional activation of T cells. Here, we found that CD8 antibody-mediated activation of memory CD8+ T cells triggered T cell receptor (TCR) downstream signaling, enhanced T cell-mediated cytotoxicity and promoted effector cytokine production in a glucose- and glutamine-dependent manner. Furthermore, pretreatment of memory CD8+ T cells with an agonistic anti-CD8 antibody enhanced their tumoricidal activity in vitro and in vivo. From these studies, we conclude that CD8 agonism activates glucose and glutamine metabolism in memory T cells and enhances the efficacy of memory T cell-based cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Glutamine , Glucose/metabolism , Glutamine/metabolism , Humans , Immunologic Memory , Lymphocyte Activation , Memory T Cells , Receptors, Antigen, T-Cell , Signal Transduction
18.
Nano Lett ; 22(12): 4661-4668, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35640103

ABSTRACT

Confined nanospaces provide a new platform to promote catalytic reactions. However, the mechanism of catalytic enhancement in the nanospace still requires insightful exploration due to the lack of direct visualization. Here, we report operando investigations on the etching and growth of graphene in a two-dimensional (2D) confined space between graphene and a Cu substrate. We observed that the graphene layer between the Cu and top graphene layer was surprisingly very active in etching (more than 10 times faster than the etching of the top graphene layer). More strikingly, at a relatively low temperature (∼530 °C), the etched carbon radicals dissociated from the bottom layer, in turn feeding the growth of the top graphene layer with a very high efficiency. Our findings reveal the in situ dynamics of the anomalous confined catalytic processes in 2D confined spaces and thus pave the way for the design of high-efficiency catalysts.

19.
Sci Immunol ; 7(71): eabh1873, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35622904

ABSTRACT

T cells become functionally exhausted in tumors, limiting T cell-based immunotherapies. Although several transcription factors regulating the exhausted T (Tex) cell differentiation are known, comparatively little is known about the regulators of Tex cell survival. Here, we reported that the regulator of G protein signaling 16 (Rgs-16) suppressed Tex cell survival in tumors. By performing lineage tracing using reporter mice in which mCherry marked Rgs16-expressing cells, we identified that Rgs16+CD8+ tumor-infiltrating lymphocytes (TILs) were terminally differentiated, expressed low levels of T cell factor 1 (Tcf1), and underwent apoptosis as early as 6 days after the onset of Rgs16 expression. Rgs16 deficiency inhibited CD8+ T cell apoptosis and promoted antitumor effector functions of CD8+ T cells. Furthermore, Rgs16 deficiency synergized with programmed cell death protein 1 (PD-1) blockade to enhance antitumor CD8+ T cell responses. Proteomics revealed that Rgs16 interacted with the scaffold protein IQGAP1, suppressed the recruitment of Ras and B-Raf, and inhibited Erk1 activation. Rgs16 deficiency enhanced antitumor CD8+ TIL survival in an Erk1-dependent manner. Loss of function of Erk1 decreased antitumor functions of Rgs16-deficient CD8+ T cells. RGS16 mRNA expression levels in CD8+ TILs of patients with melanoma negatively correlated with genes associated with T cell stemness, such as SELL, TCF7, and IL7R, and predicted low responses to PD-1 blockade. This study uncovers Rgs16 as an inhibitor of Tex cell survival in tumors and has implications for improving T cell-based immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , RGS Proteins/immunology , Animals , Cell Differentiation , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice
20.
Front Cell Dev Biol ; 10: 753957, 2022.
Article in English | MEDLINE | ID: mdl-35433686

ABSTRACT

Background: Emerging evidence shows that genome instability-related long non-coding RNAs (lncRNAs) contribute to tumor-cell proliferation, differentiation, and metastasis. However, the biological functions and molecular mechanisms of genome instability-related lncRNAs in endometrial cancer (EC) are underexplored. Methods: EC RNA sequencing and corresponding clinical data obtained from The Cancer Genome Atlas (TCGA) database were used to screen prognostic lncRNAs associated with genomic instability via univariate and multivariate Cox regression analysis. The genomic instability-related lncRNA signature (GILncSig) was developed to assess the prognostic risk of high- and low-risk groups. The prediction performance was analyzed using receiver operating characteristic (ROC) curves. The immune status and mutational loading of different risk groups were compared. The Genomics of Drug Sensitivity in Cancer (GDSC) and the CellMiner database were used to elucidate the relationship between the correlation of prognostic lncRNAs and drug sensitivity. Finally, we used quantitative real-time PCR (qRT-PCR) to detect the expression levels of genomic instability-related lncRNAs in clinical samples. Results: GILncSig was built using five lncRNAs (AC007389.3, PIK3CD-AS2, LINC01224, AC129507.4, and GLIS3-AS1) associated with genomic instability, and their expression levels were verified using qRT-PCR. Further analysis revealed that risk score was negatively correlated with prognosis, and the ROC curve demonstrated the higher accuracy of GILncSig. Patients with a lower risk score had higher immune cell infiltration, a higher immune score, lower tumor purity, higher immunophenoscores (IPSs), lower mismatch repair protein expression, higher microsatellite instability (MSI), and a higher tumor mutation burden (TMB). Furthermore, the level of expression of prognostic lncRNAs was significantly related to the sensitivity of cancer cells to anti-tumor drugs. Conclusion: A novel signature composed of five prognostic lncRNAs associated with genome instability can be used to predict prognosis, influence immune status, and chemotherapeutic drug sensitivity in EC.

SELECTION OF CITATIONS
SEARCH DETAIL
...